Reference+
Name
applyMatrix()
Description
Multiplies the current matrix by the one specified through the parameters. This is very slow because it will try to calculate the inverse of the transform, so avoid it whenever possible. The equivalent function in OpenGL is glMultMatrix().
Examples
- size(400, 400, P3D); noFill(); translate(200, 200, 0); rotateY(PI/6); stroke(153); box(140); // Set rotation angles float ct = cos(PI/9.0); float st = sin(PI/9.0); // Matrix for rotation around the Y axis applyMatrix( ct, 0.0, st, 0.0, 0.0, 1.0, 0.0, 0.0, -st, 0.0, ct, 0.0, 0.0, 0.0, 0.0, 1.0); stroke(255); box(200);![Image output for example 1]() 
Syntax
- applyMatrix(source)
- applyMatrix(n00, n01, n02, n10, n11, n12)
- applyMatrix(n00, n01, n02, n03, n10, n11, n12, n13, n20, n21, n22, n23, n30, n31, n32, n33)
Parameters
- n00- (float)numbers which define the 4x4 matrix to be multiplied
- n01- (float)numbers which define the 4x4 matrix to be multiplied
- n02- (float)numbers which define the 4x4 matrix to be multiplied
- n10- (float)numbers which define the 4x4 matrix to be multiplied
- n11- (float)numbers which define the 4x4 matrix to be multiplied
- n12- (float)numbers which define the 4x4 matrix to be multiplied
- n03- (float)numbers which define the 4x4 matrix to be multiplied
- n13- (float)numbers which define the 4x4 matrix to be multiplied
- n20- (float)numbers which define the 4x4 matrix to be multiplied
- n21- (float)numbers which define the 4x4 matrix to be multiplied
- n22- (float)numbers which define the 4x4 matrix to be multiplied
- n23- (float)numbers which define the 4x4 matrix to be multiplied
- n30- (float)numbers which define the 4x4 matrix to be multiplied
- n31- (float)numbers which define the 4x4 matrix to be multiplied
- n32- (float)numbers which define the 4x4 matrix to be multiplied
- n33- (float)numbers which define the 4x4 matrix to be multiplied
Return
- void

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
